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ABSTRACT: Physical properties such as density, viscosity, surface tension, and refractive index of piperazine (PZ) activated
aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) were measured. The experiments covered the PZ mass
fraction of (1.74 to 10.35)mass %. The AHPD concentration was varied from (13 to 25)mass %. These properties were investigated
over the temperature range of (303.15 to 333.15) K and were correlated as a function of temperature. There was a decrease in all
measured properties with increasing temperature.

1. INTRODUCTION

Alkanolamines are used for the removal of acid gases such as
carbon dioxide (CO2) and hydrogen sulfide (H2S) from the
process of different industrial gaseous streams through absorp-
tion process. The most industrially used alkanolamines include
monoethanolamine (MEA), diethanolamine (DEA), and N-
methyldiethanolamine (MDEA).1 Recently sterically hindered
amines are proposed as potential new solvents for acid gas
removal due to their unique cyclic structure, high CO2 loading,
and efficient regeneration.2�9 One of the sterically hindered
amines is 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD).
Reaction kinetics and solubility data show that AHPD is a good
potential solvent for acid gas removal.10�12 Recently there has
been a growing interest in the use of aqueous solutions of
alkanolamines containing an activator to enhance the rate of
reaction. Piperazine (PZ) has emerged as an effective activator.13�16

PZ has shown good performance as an effective activator with
MDEA and MEA due to the rapid carbamate formation with CO2.
PZ-activated MDEA technology is already used by BASF. The
addition of PZ to aqueous solutions of AHPD has also shown good
solubility and acceleration in the rate of reaction with CO2.

17,18

Therefore PZ-activated aqueous solution of AHPD could be a
potential solvent for acid gas removal. There has been a significant
interest shown by researchers to determine the thermodynamic
properties such as the density, viscosity, surface tension, and
refractive index of these binary and ternary solutions. These proper-
ties are used to get information on intermolecular interactions and to
design the acid gas absorption system.7,10,18,19 Therefore in this
paper the physical properties (density, viscosity, surface tension, and
refractive index) of aqueous solutions (AHPD + PZ) are measured
over the wide range of temperature (298.15 to 333.15) K. The
experiments covered the commercially important concentration
range of PZ mass % (1.74 to 10.35).20 The AHPD mass fraction
was varied from (13 to 25) mass %. All of the measured physical
properties were correlated as a function of temperature.

2. EXPERIMENTAL SECTION

2.1. Materials andMethods.AHPD of reagent grade (99.99 %),
PZ with a purity ofg 99 %, andMDEAwith a purity of > 98 %were

purchased fromMerck,Malaysia. All chemicalswere usedwithout any
further purification. The bidistilled water was used to prepare
solutions. All solutions were prepared gravimetrically using an

Table 1. Comparison of Experimental Results of Pure MDEA
and Water With Literature Data

MDEA
density/g 3 cm

�3 viscosity/mPa 3 s

T/K this

work

ref 22 ref 24 % AAD this

work

ref 8 % AAD

303.15 1.03458 1.03449 0.01 57.28

313.15 1.02675 1.02699 1.02545 0.02,22 0.1224 34.41 34.73 0.92

surface tension/mN 3m
�1 refractive index/nD

T/K this

work

ref 21 ref 26 % AAD this

work

ref 21 % AAD

303.15 38.26 38.74 38.08 1.20,21 0.4726 1.46008 1.46532 0.35

313.15 37.19 37.48 37.25 0.77,21 0.1626 1.45988 1.46074 0.05

Water
density/g 3 cm

�3 viscosity/mPa 3 s

T/K this work ref 25 % AAD this work ref 25 % AAD

303.15 0.99572 0.9956 0.01 0.806 0.802 0.49

313.15 0.99228 0.9922 0.01 0.659 0.656 0.45

surface tension/mN 3m
�1 refractive index/nD

T/K this work ref 27 % AAD this work ref 28 % AAD

303.15 71.02 71.21 0.26 1.33221 1.33250 0.02

313.15 69.38 69.52 0.20 1.33048 1.33062 0.01
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analytical balance (Mettler Toledo AS120S) with a measuring
accuracy of( 0.0001 g.
2.2. Density. The densities of amine solutions were measured

using a digital vibrating glass U-tube densitometer (Anton Paar,
DMA 5000) with the measuring accuracy of( 1.0 3 10

�5 g 3 cm
�3.

All densities were measured at a temperature range of (298.15 to
333.15) K with a temperature-controlled accuracy of( 0.01 K (PT
100). The reported densities were measured after achieving thermal
equilibrium, and the equipment was set to slow mode for better
accuracy. Each reported data point is an average of at least three data
points. The experimental uncertainty of measured density at
corresponding temperature was estimated to be ( 0.02 K and (
3.0 3 10

�5 g 3 cm
�3, respectively.

2.3. Viscosity. The kinematic viscosity was measured using
calibrated Ubbelohde viscometers of appropriate sizes. Viscom-
eters containing aqueous solutions were immersed in thermostatic
bath (Tamson, TVB445) with a built-in stirring system. The bath
temperature was regulated with a Pt100 temperature probe with a
temperature-controlled accuracy of ( 0.01 K. The sample was
immersed for at least 15 min to equilibrate with the set point
before anymeasurement. The efflux timewas thenmeasured using

a manual stop watch with an accuracy of( 0.01 s. The kinematic
viscosities were calculated by multiplying the efflux time with the
viscometer constant with the following eq 1

υ ¼ Ct ð1Þ
whereυ is the kinematic viscosity,C is the viscometer constant, and t
is the efflux time in seconds (s). The kinematic viscosities were
reproducible within ( 1 %. The dynamic viscosities of aqueous
solutions of (AHPD + PZ) were calculated by multiplying the
corresponding densities with the measured kinematic viscosities.
2.4. Refractive Index. The refractive index of aqueous solu-

tions was measured using a digital refractometer (Atago, RX-5000
alpha) with ameasuring accuracy of 4.0 3 10

�5. Themeasured values
of refractive index cover the temperature range from (303.15 to
333.15) K, and the temperature was controlled within ( 0.05 K.
The reported values are the averages of five measurements. The
measured experimental uncertainty at a given temperature was
found to be 5.0 3 10

�5 and 0.05 K, respectively.
2.5. Surface Tension. The surface tension was measured by

using IFT 700 (VINCI Technologies) with a precision of( 0.03
mN 3m

�1 with the temperature accuracy of ( 0.2 K.

Table 2. Density (G/g 3 cm
�3) of Aqueous AHPD (1) + PZ (2)

(100 w1/100 w2)

T/K 13/1.74 13/6.88 13/10.35 19/1.74 19/6.88 19/10.35 25/1.74 25/6.88 25/10.35

303.15 1.03037 1.03386 1.03494 1.04603 1.04933 1.05159 1.06338 1.06624 1.06880

308.15 1.02820 1.03149 1.03278 1.04405 1.04722 1.04938 1.06121 1.06406 1.06649

313.15 1.02617 1.02935 1.03056 1.04192 1.04496 1.04702 1.05897 1.06169 1.06402

318.15 1.02396 1.02707 1.02819 1.03963 1.04255 1.04455 1.05659 1.05919 1.06143

323.15 1.02161 1.02464 1.02568 1.03708 1.04002 1.04193 1.05407 1.05658 1.05871

328.15 1.01912 1.02207 1.02305 1.03382 1.03738 1.03920 1.05145 1.05385 1.05590

333.15 1.01688 1.01957 1.02048 1.03074 1.03460 1.03635 1.04886 1.05100 1.05298

Table 3. Viscosity (η/mPa 3 s) of Aqueous AHPD (1) + PZ (2)

(100 w1/100 w2)

T/K 13/1.74 13/6.88 13/10.35 19/1.74 19/6.88 19/10.35 25/1.74 25/6.88 25/10.35

303.15 1.72 1.88 2.04 2.19 2.38 2.64 2.95 3.36 3.58

308.15 1.58 1.72 1.91 2.02 2.24 2.45 2.71 3.16 3.41

313.15 1.44 1.59 1.77 1.85 2.09 2.27 2.48 2.95 3.24

318.15 1.33 1.45 1.64 1.71 1.94 2.11 2.28 2.73 3.09

323.15 1.22 1.32 1.52 1.57 1.80 1.94 2.08 2.56 2.95

333.15 1.12 1.21 1.42 1.44 1.67 1.78 1.89 2.39 2.78

Table 4. Refractive Index (nD) of Aqueous AHPD (1) + PZ (2)

(100 w1/100 w2)

T/K 13/1.74 13/6.88 13/10.35 19/1.74 19/6.88 19/10.35 25/1.74 25/6.88 25/10.35

298.15 1.35802 1.36808 1.37399 1.36741 1.37547 1.37921 1.37727 1.38694 1.39411

303.15 1.35708 1.36694 1.37284 1.36675 1.37399 1.37841 1.37628 1.38601 1.39283

308.15 1.35629 1.36632 1.37198 1.36587 1.37295 1.37778 1.37568 1.38541 1.39201

313.15 1.35563 1.36569 1.37146 1.36556 1.37198 1.37748 1.37491 1.38456 1.39129

318.15 1.35477 1.36499 1.37066 1.36467 1.37083 1.37688 1.37398 1.38385 1.39028

323.15 1.35449 1.36445 1.36976 1.36429 1.36982 1.37636 1.37351 1.38315 1.38969

333.15 1.35344 1.36389 1.36904 1.36365 1.36921 1.37551 1.37237 1.38241 1.38857
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The pendant drop method was used to measure the surface
tension in which a drop is created inside a thermostatic chamber
and a camera is installed which focuses and records the shape and
contact angle properties. All values were measured between the
temperature range of (298.15 to 333.15) K, and the reported data
point is the average of five data points. The measured experi-
mental uncertainties at a corresponding temperature were found
to be ( 0.05 mN 3m

�1 and ( 0.3 K.

3. RESULTS AND DISCUSSION

All equipment used tomeasure the physical properties such as the
density, viscosity, surface tension, and refractive indexwas calibrated.
The calibration was made with water of Millipore quality and with
pure liquids (MDEA) of known properties, and a comparison was
madewith the literature.21,22,24�28 There is a good agreement found
between literature and the present work as indicated by the percent
average absolute deviation (% AAD) values presented in Table 1.
The percent average absolute deviation (% AAD) presented in
Table 1 was calculated by the following equation23

%AAD ¼ 1
n∑

�
�
�
�
�

Xexptl � Ylit
Ylit

�
�
�
�
�
3 100 ð2Þ

Themeasuredvaluesofdensity, viscosity, surface tension, and refractive
index of aqueous (AHPD + PZ) are presented in Tables 2 to 5

as a function of temperature and concentration, where w1 and
w2 represent the mass fractions of AHPD and PZ respectively. All
measurements were made over a wide range of temperature
ranging from (303.15 to 333.15) K. The density and refractive
index values decrease linearly with increasing temperature and
increase by increasing PZ concentrations in aqueous AHPD.
However, surface tension values decrease linearly by increasing
both temperature and mass fractions of PZ and AHPD. The
density and refractive index surface tension data were fit to the
following equation

Z ¼ A0 þ A1T ð3Þ
Viscosity values increase with the increase of PZ concentration in
aqueous solutions of AHPD, or in other words viscosity increases
by increasing the AHPD/PZ ratio as shown in Table 3. The
viscosity values show a nonlinear decreasing trend, while increas-
ing temperature and therefore viscosity data was fit to the
following logarithmatic equation

logðηÞ ¼ Ao þ A1=T ð4Þ
where Z = (density, refractive index, and surface tension), η is
viscosity, Ao and A1 are fitting parameters, and T is the
temperature in K. These parameters were calculated using the
method of least-squares and presented in Table 6 along with the
standard deviations. Equation 5 was used to calculate standard

Table 5. Surface Tension (σ/mN 3m
�1) of Aqueous AHPD (1) + PZ (2)

(100 w1/100 w2)

T/K 13/1.74 13/6.88 13/10.35 19/1.74 19/6.88 19/10.35 25/1.74 25/6.88 25/10.35

303.15 55.45 53.21 52.82 51.78 49.21 48.11 48.01 47.27 46.11

308.15 54.66 52.11 51.69 50.64 48.42 47.15 46.99 46.32 45.15

313.15 53.73 51.19 50.44 49.89 47.41 46.35 46.14 45.41 44.29

318.15 52.85 50.29 49.52 49.06 46.39 45.47 45.32 44.62 43.55

323.15 51.81 49.04 48.25 48.03 45.51 44.61 44.42 43.48 42.87

333.15 50.01 47.35 46.41 46.19 43.67 43.09 42.85 41.83 41.44

Table 6. Fitting Parameters Ao, A1, and SD of Equation 3 and 4 for AHPD (1) + PZ (2) + Water (3)

13/1.74 13/6.88 13/10.35

Ao A1 SD Ao A1 SD Ao A1 SD

F/g 3 cm
�3 1.1679 �0.0005 0.0147 1.1764 �0.0005 0.0093 1.1825 �0.0005 0.0043

η/mPa 3 s �4.4933 1524.515 0.02 �4.5658 1574.5431 0.02 �3.5245 1282.6105 0.02

σ/mN 3m
�1 105.1932 �0.1642 0.19 107.5475 �0.1799 0.25 108.1232 �0.1837 0.26

nD 1.4005 �0.0001 0.01333 1.4102 �0.0001 0.01319 1.4208 �0.0002 0.0134

19/1.74 19/6.88 19/10.35

F/g 3 cm
�3 1.2008 �0.0005 0.0030 1.1987 �0.0005 0.0025 1.206 �0.0005 0.0029

η/mPa 3 s �4.1293 1487.8865 0.02 �3.3101 1266.892 0.01 �3.526 1361.4385 0.01

σ/mN 3m
�1 108.6855 �0.1884 0.28 96.8118 �0.1576 0.26 94.2748 �0.1529 0.18

nD 1.4077 �0.0001 0.01086 1.4300 �0.0002 0.00489 1.4102 �0.0001 0.0014

25/1.74 25/6.88 25/10.35

F/g 3 cm
�3 1.2113 �0.0005 0.0040 1.2209 �0.0005 0.0032 1.2292 �0.0005 0.0092

η/mPa 3 s �4.0766 1562.2518 0.01 �2.8532 1232.0554 0.01 �1.7126 906.2955 0.01

σ/mN 3m
�1 93.8462 �0.152 0.22 103.3463 �0.1853 0.24 94.2884 �0.1596 0.21

nD 1.4184 �0.0001 0.01213 1.4245 �0.0001 0.0084 1.4397 �0.0002 0.01448



136 dx.doi.org/10.1021/je2008523 |J. Chem. Eng. Data 2012, 57, 133–136

Journal of Chemical & Engineering Data ARTICLE

deviations21

SD ¼ ½∑
n

i
ðZexptl � ZcalcdÞ2=n�1=2 ð5Þ

where SD represents standard deviations, Zexptl represents
measured physical properties, Zcalcd represents calculated values,
and n represents the total number of data points.

4. CONCLUSION

Physical properties like the density, viscosity, and surface
tension of aqueous solutions of (AHPD + PZ) were experimen-
tally measured. The measurements were made over the tem-
perature range of (298.15 to 333.15) K. An overall decrease in all
properties was observed with increasing temperature. However,
density, viscosity, and refractive index values increase by increas-
ing the AHPD/PZ ratio, but the AHPD/PZ ratio shows an
inverse effect on surface tension values. The empirical correla-
tions were used to correlate all of the measured properties as a
function of temperature.
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